Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 68(1): 256-266, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32746021

RESUMO

OBJECTIVE: Current intrapartum fetal monitoring technology is unable to provide physicians with an objective metric of fetal well-being, leading to degraded patient outcomes and increased litigation costs. Fetal oxygen saturation (SpO2) is a more suitable measure of fetal distress, but the inaccessibility of the fetus prior to birth makes this impossible to capture through current means. In this paper, we present a fully non-invasive, transabdominal fetal oximetry (TFO) system that provides in utero measures of fetal SpO2. METHODS: TFO is performed by placing a reflectance-mode optode on the maternal abdomen and sending photons into the body to investigate the underlying fetal tissue. The proposed TFO system design consists of a multi-detector optode, an embedded optode control system, and custom user-interface software. To evaluate the developed TFO system, we utilized an in utero hypoxic fetal lamb model and performed controlled desaturation experiments while capturing gold standard arterial blood gases (SaO2). RESULTS: Various degrees of fetal hypoxia were induced with true SaO2 values ranging between 10.5% and 66%. The non-invasive TFO system was able to accurately measure these fetal SpO2 values, supported by a root mean-squared error of 6.37% and strong measures of agreement with the gold standard. CONCLUSION: The results support the efficacy of the presented TFO system to non-invasively measure a wide-range of fetal SpO2 values and identify critical levels of fetal hypoxia. SIGNIFICANCE: TFO has the potential to improve fetal outcomes by providing obstetricians with a non-invasive measure of fetal oxygen saturation prior to delivery.


Assuntos
Oximetria , Oxigênio , Animais , Feto , Humanos , Hipóxia , Monitorização Fisiológica , Ovinos
2.
Reprod Sci ; 27(10): 1960-1966, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32542541

RESUMO

Current intrapartum fetal oxygen saturation (SaO2) monitoring methodologies are limited, mostly consisting of fetal heart rate monitoring which is a poor predictor of fetal hypoxia. A newly developed transabdominal fetal oximeter (TFO) may be able to determine fetal SaO2 non-invasively. This study is to validate a novel TFO in determining fetal SaO2 in a hypoxic fetal lamb model. Fetal hypoxia was induced in at-term pregnant ewe by placing an aortic occlusion balloon infrarenally and inflating it in a stepwise fashion to decrease blood flow to the uterine artery. The inflation was held at each step for 10 min, and fetal arterial blood gases (ABGs) were intermittently recorded from the fetal carotid artery. The balloon catheter was deflated when fetal SaO2 fell below 15%, and the fetus was recovered. A total of three desaturation experiments were performed. The average fetal SpO2 reported by the TFO was derived at each hypoxic level and correlated with the ABG measures. Fetal SaO2 from the ABGs ranged from 10.5 to 66%. The TFO SpO2 correlated with the ABG fetal SaO2 (r-squared = 0.856) with no significant differences (p > 0.5). The fetal SpO2 measurements from TFO were significantly different than the maternal SpO2 (p < 0.01), which suggests that the transcutaneous measurements are penetrating through the maternal abdomen sufficiently and are expressing the underlying fetal tissue physiology. The recently developed TFO system was able to non-invasively report the fetal SpO2, which showed strong correlation with ABG measures and showed no significant differences.


Assuntos
Hipóxia Fetal/fisiopatologia , Oximetria/métodos , Animais , Gasometria , Modelos Animais de Doenças , Feminino , Gravidez , Ovinos
3.
ACM Trans Embed Comput Syst ; 18(5 Suppl): 1-22, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34084098

RESUMO

Non-invasive transabdominal fetal oximetry (TFO) has the potential to improve delivery outcomes by providing physicians with an objective metric of fetal well-being during labor. Fundamentally, the technology is based on sending light through the maternal abdomen to investigate deep fetal tissue, followed by detection and processing of the light that returns (via scattering) to the outside of the maternal abdomen. The placement of the photodetector in relation to the light source critically impacts TFO system performance, including its operational robustness in the face of fetal depth variation. However, anatomical differences between pregnant women cause the fetal depths to vary drastically, which further complicates the optical probe (optode) design optimization. In this paper, we present a methodology to solve this problem. We frame optode design space exploration as a multi-objective optimization problem, where hardware complexity (cost) and performance across a wider patient population (robustness) form competing objectives. We propose a model-based approach to characterize the Pareto-optimal points in the optode design space, through which a specific design is selected. Experimental evaluation via simulation and in vivo measurement on pregnant sheep support the efficacy of our approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...